

High frequency measurement of phosphate, nitrate, DOC and turbidity for NbS evaluation

Nick A Chappell and David Mindham

Lancaster University, Lancaster, United Kingdom

Natural Environment Research Council

Department for Environment Food & Rural Affairs

Context of today's presentation:

focus on effectiveness of Nature-based Solutions to hydrological issues (incl. water quality)

managed tropical forests Malaysia, PNG, India

managed temperate grasslands and woodland United Kingdom

Emphasis in this presentation:

Value of hydrological dynamics to attribute (interpret) high frequency water quality dynamics using System Identification Theory / Tools

(1) Need continuous water quality observations that are 'accurate' – key focus

(2) Need System Identification Tools to cope with intrinsically noisy environmental data

(3) Need continuous discharge observations synchronous with WQ observations

If meet these criteria for **SMART monitoring**

what learning can be achieved?

i.e., (a) free from **disinformative artefacts** (see e.g., Beven & Westerburg 2011 Hydrol Process)

weekly clean proved insufficient

Bi-weekly cleaning (brush 10% HCl) reduce step (eg, < 0.7 mg/L DOC) followed by drift correction

i.e., (b) observations not **under-sampled** ('aliased')

which changes **terms that characterise flood chemograph shape** (ie, Dynamic Response Characteristics, DRCs, fitted to observations)

e.g., **TC = time constant** (residence time of response)

Note: process interpretation dependent on DRCs and model order

eg, TC_{fast} of rainfall to DOC_{LOAD} for LI7 stream where sampling halved progressively

Jones et al (2014 Environ Sci Tech)

i.e., (b) observations not under-sampled ('aliased')

SI-method to **identify minimum sampling rate** before DRCs shift significantly

> need System Identification (SI) Tools capable of high efficiency and high parsimony models

> > high R_t^2 and strong -YIC, particularly for highest res data

i.e., (b) observations not under-sampled ('aliased')

SI-method to **identify minimum sampling rate** before DRCs shift significantly

 $1.3(\Delta TC)$

Chappell et al (2017 Water Res)

consistent with but more reliable than existing

1/6(TC) of Young (2010 BHS)

i.e., (b) observations not under-sampled ('aliased')

Chappell et al (2017 Water Res)

site	variable	sampling interval	
		T_{acc} (min)	T_{drift} (min)
Trawsnant	H^+	152	190
Hafren	H^+	600	750
Baru	H^+	110	160
Blind Beck	H^+	105	120
Pang at Tidmarsh	H^+	180	225
Pang at Buckleberry	H^+	120	300
Trawsnant	DOC	240	300
North Fork	NO ₃ -N	300	600

i.e., 1.8 – 10 hours

(2) Need System Identification Tools to cope with intrinsically noisy environmental data

e.g., RIVC algorithm

<u>R</u>efined <u>I</u>nstrumental <u>V</u>ariable <u>C</u>ontinuous-time Box-Jenkins identification algorithm

Model estimation involves **iterative pre-filtering of signals to remove high frequency noise inherent within environmental data** (even within quality assured data) that affects identification of accurate parameter values (Jones et al 2014 Environ Sci Tech)

Freely available at https://wp.lancs.ac.uk/captaintoolbox

The Computer-Aided Program for Time-series Analysis and Identification of Noisy Systems (CAPTAIN) Toolbox

(3) Need continuous discharge observations synchronous with the WQ observations

Concentration dynamics strongly associated with storm changes in waterflow dynamics (eg, channel discharge)

eg, Jones & Chappell (2014 Hydrol Res) H⁺ study

thus should measure discharge to attribute (and simulate) concentration dynamics

(3) Need continuous discharge observations synchronous with the WQ observations

C-Q relationships hysteretic; with loops very different between storms events

eg, Jones et al (2014 Environ Sci Tech) DOC study

Thus should measure discharge (and concentration) continuously

(3) Need continuous discharge observations synchronous with the WQ observations

Similarly accurate derivation of discharge required

i.e., use a control structure

(stable calibration & with measurement at point of critical flow)

If meet these criteria for

SMART monitoring

what learning can be achieved?

Visually contrast timing of chemical flux against reference of water flux:

H⁺ load and streamflow (Brianne LI8)

SMART monitoring

what learning can be achieved?

Quantify dynamics:

87-99% of dynamics in H⁺ concentration explained purely by dynamics in streamflow (Jones & Chappell, 2014 Hydrol Res)

15-min observations through contiguous storms

e.g., 2nd order CT-TF model for a simulated period for streamflow to H⁺ concentration in the LI3 basin, Llyn Brianne

SMART monitoring

what learning can be achieved?

e.g., 2nd order CT-TF model for a simulated period for rainfall to H⁺ load in the LI6 basin, Llyn Brianne

Quantify dynamics:

71-75% of dynamics in H⁺ load explained purely by dynamics in rainfall (Jones & Chappell, 2014 Hydrol Res)

15-min observations through contiguous storms

If meet these criteria for

SMART monitoring

what learning can be achieved?

Current applications of SMART monitoring approach

e.g., NFM co-benefits

turbidity (SSC)

n.chappell@lancaster.ac.uk www.es.lancs.ac.uk/people/nickc/npub.htm

